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Abstract

This is a concise summary of the entire paper, less than a page. It briefly presents
the research problem, methodology, key results, and conclusions. The abstract
must be clear and self-contained. This is the recommended structure. 1. Intro-
duction: Provide a basic introduction (1-2 sentences) to the field that is compre-
hensible to scientists from any discipline, and a more detailed introduction (2 to 3
sentences) that is comprehensible to scientists in the relevant discipline and which
introduces the gap in the literature. 2. Aims: State the hypothesis of the study (1
sentence). 3. Methods: Provide a brief description of the experimental design (1-2
sentences). 4. Results: Clearly state the most important finding, in both subjective
terms (We found that treatment X resulted in a higher survival rate than treatment
Y) and in the form of real data. Explain how this result compares to what was
originally thought (i.e. was your hypothesis correct) (3—4 sentences). 5. Conclu-
sions: Explain the implications of your results and why they are important (1-2
sentences).
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1. INTRODUCTION 1

1. Introduction

Volatility in financial markets has attracted significant attention from investors and
academics aiming to mitigate losses from large price deviations [1]. Successful
forecasting of volatility would allow fund managers to sell or hedge their positions
in advance to reduce risk. The introduction of volatility derivative products has
also allowed investors to hedge their portfolios with “long volatility” products and
speculators to trade the markets future expectations of volatility [2]. The inclusion
of this hedge in a portfolio has been shown to improve risk adjusted returns [3].
However, research has consistently shown that volatility is a complex phenomenon
that cannot be easily forecasted [4].

A prominent measure of the market implied volatility is the Chicago Board Option
Exchange’s (CBOE) Volatility Index (VIX) which weights 30 day ahead S&P500
options quotes every 15 seconds to form a weighted average of the markets implied
volatility [5]. This serves as a “fear gauge” for the market and importantly its value
is negatively correlated to down-swings in equity markets as options become more
expensive for investors [6].

A futures contract is an agreement between two parties to buy and sell a given
amount of a commodity at an agreed upon certain date in the future, at an agreed
upon price, and at a given location. Furthermore, a futures contract is the instru-
ment primarily designed to minimize one’s exposure to unwanted risk. Futures
traders are traditionally placed in one of two groups, namely hedgers and specula-
tors. Hedgers typically include producers and consumers of a commodity, or the
owners of an asset, who have an interest in the underlying asset, and are attempting
to offset exposure to price fluctuations in some opposite position in another mar-
ket. Unlike hedgers, speculators do not intend to minimize risk but rather to make
a profit from the inherently risky nature of the commodity market by predicting
market movements. Hedgers want to minimize risk, regardless of what they are
investing in, while speculators want to increase their risk and thereby maximize
profits. FUTURES
FORECAST HARD

RESEARCH
QUESTIONS
— FINDINGS

TODO

e discuss prev attempt exogenous, dimensionality reduction and ML pro-
vide a novel way to feature reduce the IV surface into something analysable
compared to network approaches
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2. Literature Review
2.1. Volatility, VIX and VIX Futures

Volatility is defined as a measure of the uncertainty of the return realised on an asset
[7] however the specifics of how this is calculated and measured have multiple
forms. While volatility is often modeled latently using conditional variance, it
is measured ex post as "realised volatility" using the standard deviation of returns.
Realised volatility is however variable and error prone due to market microstructure
fluctuations and varying sampling frequency [8]. There is also "implied volatility",
a forward-looking estimate of realised volatility. This is the one free parameter
of options pricing under Black-Sholes [9] which reflects the markets expectation
of volatility, calculated by inverting the pricing formula with an option’s market
price. The assumptions underlying the calculation of implied volatility have several
problematic elements such as the log-normal return distribution and the use of a
constant value for volatility, however, it still serves as a useful proxy for risk and
uncertainty [1].

The VIX index is a weighted average of implied volatility. It is weighted using
the inverse square of an option’s strike price to create a payoff independent of un-
derlying index price and proportional to volatility [10]. When markets experience
uncertainty, investors pay more for the hedging insurance provided by options,
thus increasing the value of the VIX index [11]. This again is why it serves as a
prominent "fear guage" from within the options market [6]. The VIX formula is:

2 «— AK; 1/ F 2
VIX = 100 x 7 Z 2 efTQ(K;) — = ( - 1) (1)

i
Where:
e T is the time to expiration (in years) of the option.
e K is the ¢-th strike price.

e AK; is the interval between strike prices.

R is the risk-free interest rate to the option’s expiration.

Q(K;) is the midpoint of the bid-ask spread for the option with strike K;.

F is the forward index level, derived from option prices.
e K| is the first strike below the forward index level F'.

There have been concerns raised with this calculation as CBOE applies a cutoff
rule once two consecutive option strikes with no bids and offers are encountered;
which can exclude options and produce erratic jumps [12].

The VIX is composed of thousands of S&P500 puts and calls which constantly
change. Thus, maintaining a replication of the VIX would involve an impracti-
cal amount of transactions in options markets affected by illiquidity. The VIX is
therefore not directly tradable, but from 2004, monthly cash-settled VIX futures
have been traded on the CBOE futures exchange [5]. This serves as a highly-liquid
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marketplace for speculators to trade their expectations of volatility, theoretically
free from arbitrage with a replicated VIX. It also provides a product for the “long
volatility hedge” discussed earlier, with its negative correlation improving portfo-
lio protection in market crashes [13]. It is worth noting that this is not a completely
pure market of hedgers and speculators, with significant evidence of attempted ma-
nipulation of VIX futures at settlement time via deep out-of-the-money (OTM) put
options [14].

Comparing the prices of VIX futures contracts across different maturities yields the
futures term structure. Traditional theory suggested that the futures term structure
reflected the market’s expectations of future prices (the Expectations Hypothesis)
[15]. While the shape of this curve fluctuates over time, its long-run average tends
to be upward sloping, centered around a long term mean level [16]. This structure
is known as contango, where futures prices exceed the spot VIX, and implying
that holding a long position in VIX futures typically results losses over time as the
futures price converges to spot [17].

More recent literature strongly rejects the Expectations Hypothesis, instead sug-
gesting the existence of a time varying investor risk premium. This is calculated as
the difference between realised and implied volatility, and quantifies the premium
that sellers charge to compensate for taking downside risk in the event of a market
crash [18]. Dew-Becker [19] finds this on average to be negative, implying that
there is a premium, and it is largest for near-term futures. Bollerslev, Johnston
and Nossman all confirm the existence of this phenomenon and show its predictive
ability on index returns, volatility product returns and the VIX index respectively
[20][16][21]. Risk premiums have been demonstrated to display counter-intuitive
behaviour such as staying constant during risky periods [22].

2.2. Forecasting VIX Futures

Previous research approaches forecasting VIX futures through two techniques:
volatility models and machine learning. Traditional volatility models use assump-
tions about the process of volatility in order to derive pricing formulas; notably us-
ing historical volatility models, generalised autoregressive conditional heteroske-
daticity (GARCH) models and stochastic volatility models. These parametric forms
are not used by the machine learning approaches which instead use explanatory
variables to estimate the futures price. Machine learning methods can be distin-
guished across higher and lower frequency prediction intervals and further by the
types of explanatory variables used.

The simplest methods used in past research regress future volatility using the his-
torical volatility series. These include autoregressive (AR) models, autoregressive
integrated moving average processes (ARIMA) and Heterogeneous AR models
(HAR). These models are oversimplified, constrained by linearity and have been
shown to be inconsistent with observed market behavior [23][1]. These are typ-
ically used as baseline forecasts in machine learning papers and do not produce
notable forecasting accuracy [24][25][26][27].

GARCH and stochastic volatility models utilise different forms and assumptions
to model complex behaviour not captured by historical volatility models. GARCH
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models assume volatility follows a conditional autoregressive process, which is de-
signed to capture more complex processes like volatility clustering [28]. This was
used to price VIX futures with a Heston-Nandi GARCH model and extended using
a GJR-GARCH model, with both models aimed at incorporating the asymmetrical
responses of implied volatility to returns [29][30]. In contrast, stochastic models
assume that underlying volatility follows a stochastic process and forecast futures
as the conditional expected mean of this volatility. A prominent example of this
process is the stochastic square root mean reverting process first explored by Zhang
and Zhu [31][32] and later expanded upon by Dotsis et al [33] by adding jumps.
Other processes such as the log Ornstein-Uhlenbeck process (diffusion with a mean
reverting drift) improved the fit of VIX futures data with the addition of a central
tendency component [23].

These models have two main limitations. Firstly, VIX futures pricing models in-
volve several layers of abstraction that can potentially oversimplify the relationship
between the VIX index and VIX futures prices. For instance, Zhang and Zhu [31]
propose a linear relationship between the squared VIX and instantaneous variance,
leading to a futures price derived from a risk-neutral integral. These assumptions
may not always hold in reality and as discussed earlier, VIX futures are influenced
by a interplay of market expectations and risk premia, suggesting a more complex
relationship. VIX futures move in the opposite direction to the VIX on 26% of
trading days, implying that forecasting volatility, implied volatility and futures on
the products are distinct tasks [34]. This highlights the value of machine learning
models which can be directly fit to VIX futures price without any abstraction or
assumptions.

Furthermore, these models are restricted by the rigidity of their assumptions. Small
alterations to the underlying process for volatility constantly yield small improve-
ments between papers however there is no consensus about the underlying dy-
namics [33][23]. The success of multiple underlying processes suggests that each
simplifies a more complex underlying pricing mechanism. Poon surveys 93 papers
and found GARCH models don’t show significant improvement in volatility fore-
casts compared to more simplistic historical volatility methods [1]. This inherent
rigidity in model structure indicates a clear need for more flexible and adaptable
forecasting techniques, such as those offered by machine learning algorithms.

Machine learning’s flexibility and generalisation capabilities have led to impressive
results in volatility forecasting. Deep learning and ensemble methods, in particu-
lar, have demonstrated superior performance over traditional models in predicting
realised variance across various studies, with similarly promising outcomes for im-
plied volatility forecasts [35][36].

One focus of current machine learning research into the VIX specifically is high
frequency pricing using deep learning. Hirsa and Osterrieder [37][38] use recurrent
neural networks and long-short term memory (LSTM) models to process S&P500
options quotes and predict the VIX index on a minute to minute basis, while Hirsa
extends this to also price VIX futures. This highlights the predictive efficacy of op-
tions, however the minutely time scale has limited applicability for investors look-
ing to hedge. Both papers also don’t quantify or elaborate on any trading strategies
based on their forecasts and the deep learning approaches offer limited economic
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insights as to how these S&P500 options affect prices. Beyond forecasting, deep
learning has also been used for dimensionality reduction via autoencoders [39];
this approach will be examined later as an alternative to principal components and
has not yet been applied in this context.

More research has been devoted to “mid-frequency” prediction intervals, charac-
terised by mixed independent variables and predictive success. Early attempts by
Konstantinidi [25][27] used exogenous macro-economic factors such as oil price
and bond curve slopes to forecast VIX and VIX futures, concluding that the in-
dex and its futures have limited predictability. In contrast to this, macro-economic
predictors were however shown to produce profitable returns on a longer month-
to-month time scale by Vrontos [40]. The returns and volatility of related financial
markets have exhibited more success as predictors however experience significant
drawdowns and variability when used in trading strategies [24][41]. Finally, a com-
parison of the trading strategies shown in these papers highlights the need for more
complexity with option straddles outperforming simplistic trading strategies, such
as taking a long position if VIX forecasts are positive [27][24].

In contrast to exogenous factors, VIX derivative products show notable predictive
value across multiple studies. Johnston [16] shows that the second component of
the VIX futures term structure (known as slope) is a statistically and economically
significant predictor of VIX futures returns. Hosker [26] also uses spreads between
VIX futures and options as predictors to predict 3 and 5 day-ahead VIX futures
returns with the best results emerging from deep learning models. These studies
broadly highlight the predictive merit of volatility derivative market sentiment and
curve structure.

The machine learning attempts at forecasting VIX futures reveal a marked con-
trast between "black box" deep learning models and more interpretable linear ap-
proaches. While deep learning techniques [37][38] often achieve strong predictive
performance, they tend to provide limited economic insight. In contrast, explain-
able models allow for a clearer assessment of variable significance and predictive
value which is increasingly valued within the machine learning and finance com-
munities [42][35]. Notably, the most robust studies extend their evaluation beyond
traditional error metrics such as RMSE and MAE by incorporating economic per-
formance measures like the Sharpe ratio to quantify trading strategy efficacy [16].

Machine learning offers a viable framework to both forecast VIX futures and as-
sess variable efficacy. Directly forecasting futures prices using machine learning
bypasses the multiple layers of abstraction required of traditional modeling ap-
proaches. This enables models to more effectively capture the complex interplay
of expectations and risk premia present in the VIX futures markets. As discussed,
medium-frequency prediction remains largely dominated by models using exoge-
nous variables and VIX derivative data. While the option quote surface has been
employed in high-frequency forecasting of VIX futures, there is also notable gap
in the current literature regarding the predictive efficacy of the S&P 500 option-
implied volatility surface for forecasting VIX futures in the medium frequency.
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2.3. The SPX Implied Volatility Surface

A consistent finding in volatility literature is the strong predictive power of option
implied volatility (IV). Latane [43] found this to be a better predictor of future
realised volatility than historical volatility and is corroborated by Poon [1], who
observed implied volatility outperforming historical volatility models in a signif-
icant majority (76%) of reviewed studies. Interestingly, it has been shown that
the VIX index itself, as a measure of implied volatility, forecasted future realised
volatility more accurately than other models [44].

By comparing implied volatilities of same-maturity options across strikes, one ob-
serves the well-documented “smirk™ or “skew,” wherein deep out-of-the-money
(OTM) puts carry higher implied volatilities as compensation for downside insur-
ance [45][7]. The shape and slope of this surface has been shown to predict equity
returns [46][47] and histogram-based measures of skew were found to be signifi-
cant predictors of the probability of market crashes [48].

Short-dated OTM puts, in particular, provide a sensitive gauge of market risk sen-
timent. Their convex payoff structure makes them attractive to informed traders
ahead of downturns, leading to price and volatility spikes that may act as early
warning signals [47][49]. Options markets more broadly have been found to lead
equity price discovery, often reflecting non-public information before it becomes
evident in spot prices [50]. A striking historical case occurred before the 1987
crash, when S&P 500 OTM puts were priced at a 25% premium over theoretical
values, anticipating the subsequent 23% market decline [51].

Given the high dimensionality of the IV surface, PCA has previously been used
to study the dynamics of implied volatility surfaces [52][53], yielding the tradi-
tional ‘level and slope’ interpretations for the first two components [54]. These
studies largely employ PCA descriptively rather than as forecasting input, however
PCA has been shown to provide efficient forecasting inputs [55]. This research
addresses that gap by applying PCA to the IV surface specifically for forecasting
VIX futures, leveraging dimensionality reduction to extract predictive signals from
complex data.

As an alternative to principal components, this research also employs autoencoders
for dimensionality reduction. Neural networks are trained to compress the input
features into a lower-dimensional latent representation and then reconstruct the
original feature space, thereby capturing efficient latent factors with the capacity to
model nonlinear structure beyond PCA [39]. In addition, this study applies masked
autoencoders, a recent line of research designed to learn cross-feature dependencies
by reconstructing deliberately hidden inputs. This has proven highly effective in
text and image representation learning [56][57], and has not yet been applied to
volatility surfaces or VIX futures forecasting.
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3. Data

3.1. Data Sources

Daily close and last price data for VIX futures was obtained from LSEG’s Datas-
cope platform from June 2004 (product inception) to June 2025. Specifically this
contained rows of quote dates, contract identifiers, last price and universal close
price which was used for significance testing. This platform automatically per-
forms contract rolling hence this was not required during pre-processing. The va-
lidity of this data was also cross-checked with other data sources such as CBOE
for deviations which yielded only small variation.

Daily closing SPX option quote and implied volatility data was collected from Op-
tionMetrics. This contained quote date, expiry date, strike price, price, implied
volatility and option greek metrics from Jan 1996 to Feb 2023 and forms the ba-
sis of the implied volatility surface predictive features. Due to data availability
limitations, the SPX options dataset was truncated at February 2023.

Finally, daily S&P500 close data was collected from Yahoo Finance which was
used to standardise and discretise option strike prices into "percentage moneyness"
as is discussed during Data Preparation and Feature Engineering. Spot VIX data
was also collected from Yahoo Finance for Exploratory Data Analysis.

3.2. Data Preparation

The VIX futures dataset was truncated at January 2006 to avoid the higher inci-
dence of missing values around the product’s introduction. After this cutoff, rows
with missing price data were removed, representing 0.75% of trading days.

Compared to the VIX futures, more substantial processing was necessary to con-
struct the implied volatility surface. Option quote dates were first aligned tempo-
rally with S&P 500 closing prices to calculate a "moneyness" measure. This was
defined as the strike price divided by the index level in order to standardise strike
prices across time as used in multiple studies [26][58]. This measure was then dis-
cretised into 10% moneyness buckets ranging from 80% to 110% to categorise op-
tions into groups ranging from out-of-the-money puts to at-the-money calls. Simi-
larly, time-to-expiry was calculated in days and grouped into four buckets: less than
30 days, 60 days, 90 days, and 180 days. Finally, to aid data completeness, missing
values were filled with their rows mean value. By aggregating quotes within each
two-dimensional bucket and averaging their implied volatilities, disparate option
contracts were transformed into a discretised implied volatility surface, forming
the base of the predictive features.

This discretised surface was temporally joined to the VIX futures data which formed
a combined daily dataset from January 2006 to February 2023.

3.3. Exploratory Data Analysis

The purpose of this exploratory data analysis is to characterize the statistical prop-
erties of the VIX futures and SPX implied volatility surface. This will identify
features such as contango in the term structure and the volatility smirk, which will
later inform feature engineering and model design.
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VIX Futures and VIX

Examining the mean term structure of VIX futures reveals the contango structure
from the front month mean of 19.517 to the 8th month mean of 22.250 as described
by Johnston [16]. This long-term contract mean value is the markets long-term ex-
pected mean of volatility. A higher standard deviation of 7.836 is also observed in
the front month compared to the 4.971 of the 8th contract given its higher sensi-
tivity and reactivity to spot movements. This is also reflected in the inter-quartile
range and maximum values, which are higher for near-term contracts compared
to longer-term as these contracts don’t adjust as much with spikes. It also worth
noting the high standard deviation representing 40% of the mean value.

Average VIX Term Structure
22.5

22.0

20.5

VIX Futures Price

20.0

1 2 3 4 5 6 7 8
Contract Months Ahead

FIGURE 1: Mean VIX Futures Term Structure

TABLE 1: Summary statistics of VIX Futures Contracts One to
Eight Months Ahead (VXc1-VXc8)

VXcl VXc2 VXce3 VXcd VXe5 VXc6 VXe7 VX8

Mean  19.517 20.363 20.899 21.348 21.987 22264 22.394 22.250
Std 7.836  7.057 6490 6.082 5851 5576 5319 4971
Min 9.600 11.300 12.200 12.990 13.470 13.900 14.300 14.690
Median 17.205 18.250 18.800 19.300 20.105 20.385 20.700 20.485
Max 81.950 70.800 60.080 51.680 47.760 45.990 44.500 44.000

This temporal variance in correlation to the underlying spot can be quantified as
seen in Table 2. Since the front month contract is the nearest to expiry it has the
highest correlation at 98.1% compared to 77.5% for the 8th contract. The front
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month contract’s high correlation with spot VIX can be seen over time in the over-
layed time series in Figure 2, which also underscores its role as a “fear index,” with
pronounced spikes observed during the Global Financial Crisis reaching 67.9 and
81.95 during the COVID-19 pandemic. The front-month contract’s strong correla-
tion with the VIX, combined with its superior liquidity, makes it the most suitable
instrument for trading directional views on volatility and thus the primary focus of
the subsequent analysis.

TABLE 2: Correlation coefficients of VIX futures contracts with
the spot VIX

Contract Correlation (%)

VXcl 0.981
VXc2 0.941
VXc3 0.905
VXc4 0.875
VXc5 0.843
VXc6 0.815
VXc7 0.793
VXc8 0.775

—— Front Month Future
VIX Price

a0

70

60

50

Price

40

30

20

10

2004 2008 2012 2016 2020 2024
Date

FIGURE 2: VIX Front Month Future Price and VIX over Time

Examining the distribution of the front-month VIX futures contract highlights dis-
tinctive properties of volatility. The skewness of 2.28 and the corresponding his-
togram reveal a pronounced right tail, indicating that large upward moves in volatil-
ity are more frequent than large downward moves. In addition, the kurtosis of 7.65
reflects a strongly leptokurtic distribution, with a much higher probability of ex-
treme outcomes than a Gaussian benchmark. These features are consistent with
the presence of volatility shocks, a phenomenon often incorporated into economet-
ric models through explicit jump components [23][46][59].
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Histogram of VXcl
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FIGURE 3: VIX Front Month Future Price Histogram
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SPX Implied Volatility Surface

Plotting the mean implied volatility against moneyness reveals the well-documented
volatility smirk, consistent with previous studies, as option issuers demand higher
compensation for highly leveraged risk insurance (tail risk pricing) [45]. This is
evident in the 80% moneyness bucket, which exhibits a mean implied volatility of
0.283 compared to 0.154 for at-the-money (ATM) options. Examining the surface
across the term structure shows mixed results: implied volatility for 80% money-
ness options declines notably across longer expiries, whereas ATM options main-
tain a near-constant volatility around the mean of 0.154.

Interestingly, the highest mean, maximum, and variance of implied volatility are
observed for the 0-day expiry 80% moneyness options, representing short-dated
out-of-the-money puts. This highlights the region of the surface that is most pro-
nounced in risk sentiment signaling [51]. Nevertheless, valuable information is
embedded across the entire surface. To capture these broader patterns, the sub-
sequent analysis applies Principal Component Analysis, providing a more holistic
and dimension-reduced representation of the volatility surface.

Mean Implied Volatility by Moneyness Mean Implied Volatility Surface
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~0.150
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Moneyness %

FIGURE 4: Volatility Smirk and Mean SPX Implied Volatility Sur-
face

TABLE 3: Mean implied volatility by moneyness buckets

Moneyness Mean IV

80% 0.283
90% 0.207
100% 0.154

110% 0.167




3. DATA

TABLE 4: Summary statistics of implied volatility by expiry and
moneyness

Expiry / Moneyness Mean Std. Dev. Min Max

0 days, 80% 0.327 0.080 0.184 0.976
0 days, 90% 0.212 0.085 0.107 0.897
0 days, 100% 0.154 0.076 0.066 0.785
0 days, 110% 0.212 0.063 0.109 0.664
30 days, 80% 0.280 0.075 0.156 0.834
30 days, 90% 0.205 0.077 0.109 0.775
30 days, 100% 0.148 0.072 0.070 0.699
30 days, 110% 0.163 0.053 0.095 0.624
60 days, 80% 0.267 0.071 0.149 0.773
60 days, 90% 0.205 0.072 0.113 0.700
60 days, 100% 0.152 0.069 0.070 0.633
60 days, 110% 0.151 0.053 0.080 0.563
90 days, 80% 0.258 0.067 0.156 0.688
90 days, 90% 0.207 0.067 0.119 0.624
90 days, 100% 0.161 0.066 0.078 0.581

90 days, 110% 0.143 0.057 0.075 0.535
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4. Methodology

4.1. Feature Engineering

Principle Component Analysis

To extract informative features from the discretised SPX implied volatility surface,
Principal Component Analysis (PCA) was applied. PCA generates latent factors
that are linear combinations of the original variables, chosen to maximise the vari-
ance explained. Each successive component is constructed to be orthogonal to
those that precede it. PCA thus reduces dimensionality while capturing the dom-
inant and unique modes of variation. This provides both parsimonious inputs for
machine learning models and an alternative perspective on the surface’s dynamics
[55][60].

As this analysis is purely conducted on the discretised IV surface, each principle
component can be represented as:

PCp, = a11V30,08 + 2lV30,0.9...0c161 V1g0,1.1-

The sign and magnitude of the loading coefficients (o;) can highlight the dominant
sources of variation and can be examined across the surface to associate principal
components with underlying economic factors. The first three principal compo-
nents accounted for 96.1% of the explained variance, with subsequent components
contributing negligibly (Figure 5). Given this, only the first three were retained for
analysis.

Furthermore, preliminary statistical tests supported the suitability of applying prin-
cipal component analysis. Bartlett’s Test of Sphericity yielded a p-value of 0.000,
indicating significant correlations among features, while the Kaiser—Meyer—Olkin
measure returned a value of 0.927, demonstrating a high degree of shared variance.

Cumulative Explained Variance by PCA Components
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FIGURE 5: Explained Variance of Principle Components
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Auto-Encoders

As an alternative and more modern approach to dimensionality reduction, this
study also employs autoencoders on the same IV surface data used for PCA. An
autoencoder consists of a neural network encoder f that maps each input vector
of implied volatilities z; = [IV30,0.8, 1V30,0.9, - - - , I Vig0,1.1] into a k-dimensional
latent representation z;, and a decoder g that reconstructs x; from z;, as illustrated
in Figure 6. Unlike PCA, autoencoders can capture nonlinear structure in the data
and extract more abstract feature interactions [39].

In addition, this research tests masked autoencoders, which use the same architec-
ture but randomly replace a subset of input features in ; with zeros and compute
the reconstruction loss only on these masked components. This forces the model
to learn dependencies among features to recover the hidden values. As discussed,
masked autoencoders have recently achieved significant success in representation
learning for natural language and computer vision tasks [56][57].

Encoder: f Decoder: g
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FIGURE 6: Auto-Encoder Architecture

4.2. Models

A wide variety of machine learning models ranging from linear regressions to ran-
dom forests and neural networks were tested and considered. Baseline controls
were also included using traditional forecasting approaches, such as ARIMA, com-
monly employed in machine learning studies [24][26][27].

Hyperparameter optimisation was performed using a grid search over key param-
eters, with a validation subset spanning November 2016 to July 2019. The first
three principal components of the implied volatility surface were used as predic-
tors to forecast front-month VIX futures prices at the 1-day horizon. Final model
parameters were selected based on the validation root mean squared error (RMSE),
reported in Table 5.
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Most machine learning models showed comparable performance on the validation
set, with ARIMA having the highest validation RMSE. The low shrinkage param-
eters selected for Ridge and Lasso indicate that regularisation was not strongly
required for the regression coefficients. In contrast, the relatively shallow maxi-
mum depths chosen for Gradient Boosting and Random Forest suggest that these
models have some potential to overfit the data.

TABLE 5: Models considered in the study with Hyperparameters
and Validation Performance

Model Key Hyperparameters Validation RMSE
Machine Learning Models
Linear Regression - 1.327
Ridge Regression Shrinkage parameter o = 0.1 1.327
Lasso Regression Shrinkage parameter o = 0.001 1.326
Random Forest Number of trees n = 100, max 1.306
depthd =5
Gradient Boosting Number of trees n = 125, max 1.376
depth d = 1, learning rate [ =
0.5
Neural Network (MLP) Hidden layer size n = 100, 1.250
learning rate [ = 1, max iter-
ations = 50
Long Short-Term Memory Hidden layer size n = 50, learn- 1.458
ing rate lp = 0.001, epochs =
250
K-Nearest Neighbours Number of neighbours k = 8 1.396
Baseline Control
ARIMA Orders (1,1, 3) 1.496

Hyperparameter optimisation was also undertaken for the autoencoders using a
linear regressions fit on the same validation set using the autoencoded latent fea-
tures as predictors. This used a 64-32-k-32-64 architechure for both standard and
masked autoencoders, while a grid search was conducted for the amount of epochs,
learning rate, latent space dimension (k) and the masking rate. The results can be

below.
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TABLE 6: Autoencoder Hyperparameters and Validation Perfor-

mance
Autoencoder Key Hyperparameters Validation RMSE
Standard Autoencoder Epochs = 50, learning rate | = 1.334

0.01, latent dimension &k = 4
Masked Autoencoder  Epochs = 50, learning rate [ = 1.272

0.01, latent dimension & = 5,
masking rate m = 30%

4.3. Training and Evaluation Framework

This research will employ a multi-faceted testing approach to evaluate model per-
formance and practical utility.

Dependent Variable

This study models VIX futures prices rather than returns for several reasons. Re-
turns are highly volatile and heavy-tailed compared to the price series: for example,
a move from $15 to $18 represents a 20% change but only a $3 absolute shift. This
is further demonstrated by the front-month return series having a standard deviation
around 40% of its mean. Logarithmic transformations can reduce this volatility but
at the cost of intuitive meaning and added analytical complexity. In contrast, mod-
eling raw prices provides a more stable and interpretable framework for assessing
predictive performance, facilitates comparison with other studies that mainly use
price, and generally yields a higher proportion of explained variance, as shown in
Table 7.

TABLE 7: Full Sample Fit Metrics Across Dependent Variables
with Linear Regression of PC1, PC2 and PC3

Dependent Variable  R?

One Day Return 0.030
One Week Return 0.104
One Month Return  0.295

Vxcl T+1 0.957
Vxcl T+3 0.920
Vxcl T+5 0.885

Machine Learning Evaluation Framework

First, a standard 80:20 train-test split will be implemented by withholding the final
20% of the time series data for out-of-sample testing, spanning July 2019 to Feb-
ruary 2023. To mitigate the risk of overfitting to a specific time period and improve
generalisation, this will be complemented by a 5 fold expanding time series cross
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validation averaging metrics across all folds as per Hosker’s paper [26]. See Figure
7 for the dates of each period.

Expanding Time Series Cross-Validation Splits of Data

Fold 1 Train

Validation

Fold 2
Fold 3
Fold 4

Fold 5

A00° 200® o 20V 20V 0¥ 2 220 200
s s s s s s s s s
Date

FIGURE 7: Expanding Time Series Cross Validation

To strengthen the robustness and practical relevance of the results, multiple fore-
cast horizons will be examined. These include a 1-day-ahead forecast, consis-
tent with multiple studies [16][24][25], as well as 3 and 5 day horizons used
by Hosker [26]. These forecasts will be for the price of the front month con-
tract: V Xcl = f(PCq, PCy, PC3), with tests collecting Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and explained variance (R?) to evaluate
model performance.

A modified version of these tests was used for the traditional forecasting baselines
as these operate on time series data. ARIMA models were trained on the VXcl
training series, and forecasts were generated one step at a time. After each step,
the model’s internal state was updated with the new observation, but the model
parameters were not retrained. This allows a more accurate comparison with the
machine learning models.

Economic Significance Evaluation Framework

Economic significance will be assessed using a trading strategy simulation. The
models will be trained on the first 50% of the dataset, with the remaining data
divided into three expanding folds for evaluation. Trading costs and the a historical
median spread of 5 cents, are incorporated to approximate realistic conditions. The
trading simulation will be constructed the following trading rules:

If §t41 — y¢ > threshold; go long and hold until ;1 — y; < threshold.
If §t41 — y+ < —threshold; go short and hold until {1 — y: > —threshold.
Where y; is the current VIX front month price on day t, and ¢ is the forecast for tomorrows.
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The trading rule acts directionally on the forecasted price change g:41 — y¢, how-
ever positions are only entered when the predicted move has sufficient value rel-
ative to the current price, regulated by the threshold. This again uses g:41 =
f(PCy, PCs, PC3) to forecast.

Comparisons across studies can then be made using common metrics when the
time scales are broadly comparable. Normalised measures, such as the annualised
Sharpe ratio and annualised compound return, will be collected and are the pre-
ferred metrics for cross-study evaluation. Adjustments to features, feature subsets,
and trading strategy parameters will also be explored to enhance performance met-
rics and provide separate analysis.

Autoencoder Evaluation Framework

Autoencoded latent features z; simply replace the principle components as predic-
tive features in identical pipelines and training splits for both machine learning and
economic evaluation frameworks.
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5. Results and Discussion

5.1. Principle Components

Principle Component One

The first principal component (PC1) of the implied volatility surface closely tracks
the VIX front-month futures price (VXcl). These variables exhibit a linear cor-
relation of 98.34%, and a regression of VXcl on PC1 produces an R? of 0.967.
This relationship is evident in the scatter plot (Figure 9) and in the time series of
PC1 (Figure 10), which captures the characteristic VIX peaks during the Global
Financial Crisis and the COVID-19 pandemic. Further statistical testing through a
Johansen test confirmed rank one co-integration at a 95% confidence level, imply-
ing a stable relationship between these two variables, see Table 19.

The loadings heatmap shows minimal variation, with all values ranging from 0.16
to 0.31, indicating that PC1 functions as a weighted average of implied volatil-
ity, similar to the VIX index (Figure 8). This observation is consistent with prior
PCA analyses of financial curves, where the first principal component is typically
interpreted as the "level" of the curve [54]. Similarly, cross-sectional PCA of the
implied volatility surface has also identified a dominant "level" factor [53].

TABLE 8: OLS Regression of VXc1 on PC1

Variable Coefficient Std. Error t-statistic p-value
Intercept 20.364 0.023 878.570  0.000
PC1 30.055 0.229 131.418  0.000
R-squared 0.967

Adjusted R-squared 0.967

F-statistic 1.727e+04

Prob (F-statistic) 0.000
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PCA Component 1 Loadings
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FIGURE 8: Loadings of PC1 by Moneyness and Expiry
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FIGURE 9: PC1 scattered against VIX front month
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PCA Components Over Time
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FIGURE 10: Principle Components over Time

Principle Component Two

The second principal component (PC2) is associated the skew of the option smirk.
Previous work has shown the second component typically represents skew or slope
of the surface [52][54] and this can clearly be seen in the loadings heatmap 11.
Other studies have linked this skew factor to VIX returns [16], and to investigate
this, PC2 was regressed on VIX front-month returns over one-day, one-week, and
one-month horizons. All regressions produced low R? values indicating that PC2
captures variation in the surface largely independent of short-term VIX returns.
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PCA Component 2 Loadings
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FIGURE 11: Principle Components Two Loadings

TABLE 9: OLS Regression Statistics: PC2 Regressed on Various
Predictors

Predictor R-squared

One-day return 0.015
One-week return 0.039
One-month return 0.052

Principle Component Three

The third principal component (PC3) has less intuitive interpretations than the pre-
vious components. The loadings heatmap has negative loadings on longer expiry
options and positive loadings on shorter dated options, with notably high loadings
on short dated OTM puts and short dated ATM calls. This factor thus seems to cap-
ture some term structure dynamics as well as panic spikes in the IV of short-dated
puts and calls.

Unlike PC2, PC3 exhibits a clear correlation with VIX returns. This relationship
is illustrated in Figure 13, where the regression line of best fit with one-month
front-month VIX futures returns is both statistically significant (p-value = 0.000)
and economically meaningful with an R? of 0.104, double that of PC2. These re-
sults suggest that PC3 functions as a broader panic or stress signal, capturing shifts
in demand for short-dated options when markets anticipate sharp moves. This
may reflect hedging activity through downside protection, or alternatively specula-
tive demand for leveraged upside exposure, both of which intensify in periods of
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heightened uncertainty [51]. Its alignment with major market volatility is evident
in Figure 14, where extreme values of PC3 consistently coincide with pronounced
equity market turbulence.

PCA Component 3 Loadings
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FIGURE 12: Loadings of PC3 by Moneyness and Expiry
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TABLE 10: OLS Regression of One-Month Return on PC3 3

Variable Coefficient Std. Error z-statistic p-value
Intercept 0.024 0.004 6.453 0.000
PC3 2.140 0.235 9.117 0.000
R-squared 0.104

Adjusted R-squared 0.104

F-statistic 83.12

Prob (F-statistic) 1.16 x 10719
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FIGURE 14: S&P500 Performance Around Extreme PC3 Values

5.2. Machine Learning Tests of Significance

TABLE 11: Model Performance Metrics across 80:20 Train Test

Split
| One-Day Ahead | Three-Day Ahead |  Five-Day Ahead
Model |RMSE MAE R? |RMSE MAE R*> |RMSE MAE R?
Linear Regression | 2.118 1.344 0.921 | 3.140 1902 0.826 | 3910 2261 0.729
Ridge Regression | 2.119 1.345 0.921 | 3.141 1903 0.825| 3912 2262 0.729
Lasso Regression | 2.125 1.350 0.920 | 3.147 1907 0.825| 3919 2267 0.728
Random Forest 2.328 1416 0.904 | 2973 1920 0.844 | 3.768 2296 0.748
Gradient Boosting | 2.353 1.444 0.902 | 3.028 1.950 0.838 | 3.820 2.313 0.741
Neural Network 2.336 1.443 0.904 | 3.068 1.902 0.833 | 4344 2723 0.666
Nearest Neighbours | 2.269 1.476 0.909 | 3.094 2.075 0.831 | 3.889 2518 0.732
LSTM 2765 1.720 0.865 | 3.924 2231 0.727 | 4.643 2704 0.617
ARIMA 2.598 1.615 0.881 | 3.806 2.298 0.744 | 4578 2734 0.628

3This utilises heteroskedasticity-robust p-values based off a residual plot, see Figure 18.
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| One-Day Ahead

Three-Day Ahead

Five-Day Ahead

Model |RMSE MAE R?> |RMSE MAE R*> |RMSE MAE R?
Linear Regression | 1.725 1.188 0.898 | 2332 1576 0.814 | 2.815 1.880 0.727
Ridge Regression | 1.728 1.189 0.898 | 2.334 1.577 0.814 | 2.815 1.880 0.727
Lasso Regression 1.727 1.190 0.898 | 2.334 1.577 0.814 | 2.817 1.881 0.727
Random Forest 2.015 1.372 0.875| 2.533 1.750 0.796 | 3.105 2.090 0.694
Gradient Boosting | 2.145 1.471 0.866 | 2.598 1.828 0.782 | 3219 2.181 0.670
Neural Network 1.942 1401 0.886 | 2.436 1.681 0.780 | 3.277 2.408 0.637
Nearest Neighbours | 1.960 1380 0.876 | 2.542 1.803 0.787 | 3.093 2.149 0.681
LSTM 2231 1514 0.839 | 2.848 1.865 0.730 | 3.648 2.337 0.586
ARIMA 1.892 1245 0.869 | 2.569 1.728 0.761 | 3.043 2.052 0.663

Both the train—test split and the five-fold expanding cross-validation produced con-
sistent and informative results. The most striking pattern is the dominance of linear
models: OLS, Ridge, and Lasso repeatedly achieved the lowest RMSE and MAE,
and the highest R? values across all forecast horizons. This suggests a meaningful
degree of linearity between the principal components and VIX futures prices, as
highlighted in the previous section.

Models with higher complexity and a tendency to overfit generally underperformed
across all forecast horizons and evaluation metrics, with the LSTM model showing
the poorest performance. This result is contrasting to other studies where there
was an out-performance of more complex models, namely artificial neural network
models [35][26].

It is also notable that most models outperformed the traditional ARIMA bench-
mark, which demonstrated high performance metrics in other studies [26]. As a
baseline comparison, this suggests that the principal components capture predic-
tive information beyond what is contained in the VIX futures time series used by
ARIMA.

As expected, forecast accuracy deteriorated with longer horizons, reflected in ris-
ing errors and falling explained variance. Performance under the simple 80:20
train—test split was also considerably weaker than under cross-validation. This
discrepancy can be attributed to the unusually turbulent test period, which encom-
passed both the COVID-19 shock and the 2022 European bond market crisis.

Direct comparison of error metrics across studies is challenging given differences
in test frameworks and time periods. Nevertheless, Hosker’s 10-fold cross-validation
over 20062018 provides a useful benchmark: their best-performing model achieved
an RMSE of 4.73 and an R? of 0.43 for three-day-ahead VIX front-month futures
[26]. By contrast, this study’s RMSE of 2.332 and R? of 0.814 highlight both
the stronger predictive accuracy and explanatory power of principal components in
modeling VIX futures prices. It is also lower than Guo, Qiao and Konstantinidi’s
respective studies reported RMSE however these are on smaller train-test samples,
making direct comparison difficult [30][61][27].
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TABLE 13: Performance Metrics with Various Feature Subsets
using Linear Regression and 5 Fold Expanding Cross Validation

| One-Day Ahead | Three-Day Ahead |  Five-Day Ahead
Features |RMSE MAE R?> |RMSE MAE R? |RMSE MAE R?
PCl1 1.945 1376 0.879 | 2462 1.698 0.801 | 2.908 1970 0.716
PC2 8.482 6.647 -1.409 | 8480 6.643 -1.409 | 8.468 6.641 -1.410
PC3 8.619 6714 -1.407 | 8592 6.700 -1.408 | 8.560 6.686 -1.412
PC1, PC2 1.824 1.281 0.883 | 2.395 1.635 0.802 | 2.869 1.928 0.715
PC1, PC3 1.859 1.292 0.889 | 2.406 1.638 0.810 | 2.858 1.923 0.725
PC2, PC3 8.442 6561 -1373| 8448 6573 -1.382| 8439 6.579 -1.390
PC1,PC2,PC3 | 1.725 1.188 0.898 | 2332 1.576 0.814 | 2.815 1.880 0.727

TABLE 14: OLS Regression of One-Day ahead VIX Front-Month
Futures on Principal Components on Full Sample *

Variable Coefficient Std. Error z-statistic p-value
Intercept 20.369 0.026 770.373  0.000
PC1 29.725 0.249 119.429  0.000
PC2 -10.257 0.784 -13.076  0.000
PC3 -20.188 1.449 -13.936  0.000
R-squared 0.957

Adjusted R-squared 0.957

F-statistic 8968

Prob (F-statistic) 0.000

The cross-validated performance of different principal component subsets high-
lights the dominant predictive power of PC1 for VIX futures prices. This result
is intuitive, given the structure of PC1 as a weighted average of implied volatility,
but it is also economically significant, achieving an out-of-sample R? of 0.879 for
one-day-ahead front-month VIX futures prices. By contrast, excluding PC1 and
relying only on PC2 and PC3 produces negative R? values in Table 13, indicating
forecasts were worse than the mean VXcl value.

Incorporating PC2, PC3, or both alongside PC1 improves RMSE, MAE, and R?
across all three forecast horizons, suggesting incremental predictive value in these
components. Interestingly, Table 14 shows that PC3 enters with a negative co-
efficient in the price regression, despite its strong positive correlation with VIX
returns. This underscores the distinct and separate challenges of forecasting prices
versus returns [62]. When all three components are included, the regression achieves
an out-of-sample R? of 0.898 under five-fold cross-validation and 0.957 over the
full sample, demonstrating the strong explanatory power of these features.

4This utilises heteroskedasticity-robust standard errors (HC3), see Residual Plot at Figure 19.
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SHAP analysis reinforces the relative importance of the PCA features in the linear
model. As shown in Figure 15, PC1 is the most influential feature by a wide mar-
gin. PC3 also carries meaningful incremental importance, exceeding PC2, which
is consistent with the earlier exploratory analysis. Overall, the attribution confirms
that most predictive power sits in the “level” factor (PC1), with PC3 adding direc-
tional information.

PCA 1 +5.79
PCA 3

PCA 2

2 3 4 5 6
Mean Absolute Value of SHAP values
FIGURE 15: Mean SHAP Values
5.3. Economic Tests for Significance
TABLE 15: Trading Performance with Various Models

Model Sharpe Ratio Sharpe 95% CI Fixed Trade Return Annualised
Linear Regression 1.821 1.212,2.419 0.339

Ridge Regression 1.862 1.278,2.512 0.342

Lasso Regression 1.871 1.246, 2.452 0.342

Random Forest 1.846 1.309, 2.407 0.360

Gradient Boosting 1.677 1.066, 2.266 0.356

Neural Network 0.685 0.292, 1.487 0.366

Nearest Neighbors 1.496 0.855, 2.079 0.321

LSTM 0.887 0.237, 1.639 0.282

ARIMA -0.155 -0.767,0.477 -0.139

There are clear distinctions between model fit in machine learning and the abil-
ity to generate profitable trading signals. While Linear Regression consistently
outperformed all other models across the three forecast horizons in terms of error
metrics, it didn’t produce the best Sharpe ratios and annual returns. Instead, the
strongest performance on these economic measures came from a Ridge and Lasso
regression, implying that regularisation can provide valuable guardrails in trading
strategies. This does however again emphasise the notable linearity in the data.

Network models, such as LSTM and Neural Networks, performed notably poorly
in the trading simulations, mirroring their cross validation performance. The ten-
dency of networks to be over-trained, over-fit, or incorrectly tuned highlights that
a strong fitting ability does not necessarily translate into profitable trading models
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[63][64]. This lower performance and higher variance can be seen in Figure 16,
also highlighting the outperformance of the regularised models.

The Sharpe ratios highlight the economic significance of the principle components
as predictor, especially when compared with the negative Sharpe ratio from the
ARIMA simulation. This again suggests predictive value beyond that embedded in
the VIX futures time series. Furthermore, the Sharpe ratios observed here exceed
those previously reported in the literature, such as the 0.085 reported by Konstan-
tinidi [25] and the 1.42 reported by Vrontos (based on an assumption of spot VIX
tradability) [40]. It is also important to note the wide confidence intervals imply-
ing a degree of variability in returns, however this can be partially attributed to the
comparatively large 8 year test sample
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FIGURE 16: Trading Strategy Returns by Models
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Trading Strategies by Feature Subsets

TABLE 16: Sharpe Ratios with Various Principle Component Fea-
ture Subsets

Model and Subset 1 1,2 1,3 1,2,3

Linear Regression 1.754 1.608 1.787 1.821
Ridge Regression  1.755 1.638 1.845 1.862
Lasso Regression  1.755 1.648 1.844 1.871
Random Forest 1.882 1.867 1.821 1.846
Gradient Boosting 1.716 1.565 1.769 1.677
Neural Network 1.563 1.738 1.870 0.685
Nearest Neighbors 1.611 1.526 1.189 1.496
LSTM 1.164 1.045 1.102 0.887

An examination of trading performance across feature subsets provides insights
into the marginal contribution of individual predictors. The analysis was con-
ducted with PC1 as the baseline, given its emergence as the strongest single predic-
tor, whereas the remaining components in isolation exhibited limited explanatory
power for VIX futures (Table 13). The inclusion of PC2 generally reduced perfor-
mance relative to PC1 alone, a result consistent with earlier exploratory analysis
indicating weak correlation between PC2 and VIX futures. By contrast, the addi-
tion of PC3 yielded incremental improvements in most cases, again in line with
prior findings.

With respect to model class, linear specifications attained their highest performance
when all features were included. In contrast, more overfitting-prone models such
as LSTMs and neural networks tended to perform better with more parsimonious
feature sets. This pattern suggests that the predictive signal is largely linear and
concentrated in PC1, while later components primarily introduce noise that com-
plex models tend to overfit. Neural networks, in particular, were clear outliers, with
performance deteriorating markedly when all three principal components were em-
ployed.
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Hedging

To address the variance in trading strategy performance, a hedge was tested by
taking an offsetting position in the second-month futures contract against the front-
month trade. Several static weighting schemes were considered, such as an 50/50
split and weights calibrated to be neutral with respect to spot VIX. However, the
highest sharpe was consistently achieved by allocating 100% to the front month.
This suggests that the core strategy was effective, while the hedge merely diluted
returns. Alternative approaches such as variance-minimization would overweight
the less volatile second-month contract (similarly to the spot VIX neutral hedge),
further lowering Sharpe ratios.

The residual plot in Figure 19 highlights the presence of heteroskedasticity in VXcl
forecasts, with variance increasing alongside prediction magnitude and hence it
was hypothesised that a hedge would be more useful during volatile periods. To
test this and retain the stronger performance of the front month under typical con-
ditions; a dynamic hedge weighting scheme was introduced as follows:

If y; > 30; hedge using a [35, 65] weighting.
Else if y; < —30; don’t hedge.
Where y; is the current VIX front month price on day t.

The threshold was chosen using the point at which heteroskedasticity becomes
noticable in Figure 19 and the hedge ratio was chosen using a grid search across
weighting values using Linear Regression, see Figure 20. Interestingly, during
volatile periods, this optimised hedge ratio limits exposure to spot to almost 0%,
compared to 60% when trading the front month only.

TABLE 17: Trading Performance With Variable Second Month

Hedge
Model Sharpe Ratio Unhedged Sharpe Ratio Hedged
Linear Regression 1.821 2.006
Ridge Regression 1.862 2.070
Lasso Regression 1.871 2.078
Random Forest 1.846 1.795
Gradient Boosting 1.677 1.791
Neural Network 0.685 1.306
Nearest Neighbors 1.496 1.294
LSTM 0.887 1.464

This demonstrated improvements across the board of machine learning models and
achieved the highest sharpe ratio thus far, again with linear models. This confirms
the use of a dynamically increasing hedge can effectively combat heteroskedas-
ticity and increase the risk-reward characteristics of these trading strategies. This
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finding is consistent with previous work suggesting that volatility-dependent dy-
namic hedging can outperform static hedges [65].

5.4. Auto-Encoder Comparisons

TABLE 18: One day Ahead Five Fold Expanding Cross Validation
and Trading Simulation Results for Auto-Encoded Features

| RMSE | R? | Sharpe Ratio
Model | Standard Masked | Standard Masked | Standard Masked
Linear Regression 1.865 1.964 0.900 0.886 1.349 1.905
Ridge Regression 1.865 1.964 0.900 0.886 1.349 1.907
Lasso Regression 1.864 1.961 0.900 0.887 1.350 1.907
Random Forest 2.254 2.045 0.854 0.883 1.295 1.692
Gradient Boosting | 2.270 2.188 0.863 0.869 1.014 1.360
Neural Network 2.050 2.354 0.872 0.837 1.431 1.738
Nearest Neighbors | 2.041 1.968 0.879 0.890 1.709 1.602
LSTM 2.371 2.303 0.829 0.841 0.762 0.779

There is considerable variation in performance across models, metrics and au-
toencoder. Most machine learning specifications perform worse when using auto-
encoded features compared to principal components. In linear mmodels however,
standard autoencoder features achieve better machine learning fit than masked fea-
tures, yet deliver substantially weaker trading outcomes. By contrast, masked au-
toencoder features yield the strongest trading performance, particularly when com-
bined with linear models. Overall, both standard and masked autoencoders provide
forecasting inputs comparable to principal components in compressing the IV sur-
face. Notably, the latent features produced by a masked autoencoders coupled with
linear models outperform all models using PCA predictors in identical trading sim-

ulations.
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The scatter plots of the latent features highlight the analytical advantages of prin-
cipal component analysis relative to autoencoders. PCA’s linear form yields ex-
plicit loadings that can facilitate interpretation, while the orthogonality constraint
ensures that components capture distinct sources of variation. In contrast, autoen-
coders function as black-box models, producing latent variables that are both dif-
ficult to interpret and can be highly correlated as seen in Figure 17. Variance in-
flation factor tests for the masked autoencoded features also confirm substantial
multicollinearity (Table 20), raising concerns for both forecasting stability and in-
terpretability. By contrast, principal components provide more transparent and
differentiable outputs, enabling clearer variable significance and interpretations,
properties which are gaining popularity in machine learning [42].
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TABLE 19: Johansen Cointegration Test

Rank Trace Stat Crit 90% Crit 95% Crit 99%
0 32.466 10.474 12.321 16.364
1 1.495 2.976 4.130 6.941
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TABLE 20: Variance Inflation Factor for Masked Autoencoder
Features in Training Set

Latent Feature \ VIF standard VIF masked

AE1 1.651 28.670
AE2 1.606 124.769
AE3 1.271 37.055
AE4 1.675 230.224

AES 268.707
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